10 research outputs found

    Equal Incremental Cost-Based Optimization Method to Enhance Efficiency for IPOP-Type Converters

    Full text link
    Systematic optimization over a wide power range is often achieved through the combination of modules of different power levels. This paper addresses the issue of enhancing the efficiency of a multiple module system connected in parallel during operation and proposes an algorithm based on equal incremental cost for dynamic load allocation. Initially, a polynomial fitting technique is employed to fit efficiency test points for individual modules. Subsequently, the equal incremental cost-based optimization is utilized to formulate an efficiency optimization and allocation scheme for the multi-module system. A simulated annealing algorithm is applied to determine the optimal power output strategy for each module at given total power flow requirement. Finally, a dual active bridge (DAB) experimental prototype with two input-parallel-output-parallel (IPOP) configurations is constructed to validate the effectiveness of the proposed strategy. Experimental results demonstrate that under the 800W operating condition, the approach in this paper achieves an efficiency improvement of over 0.74\% by comparison with equal power sharing between both modules

    TECHNIQUES TO REDUCE THE RISK OF MALICIOUS OPERATIONS BEING PERFORMED DURING REMOTE CONTROL OF NETWORK DEVICES

    Get PDF
    Remote logins to network devices, such as during remote support sessions, can potentially introduce the risk of harm to network devices through human errors that could be triggered by technical support personnel during such remote logins/support sessions. Presented herein are techniques that can be implemented to fundamentally reduce the risk of human error that may occur during remote control of network equipment

    Effects of ambient temperature and relative humidity on preterm birth during early pregnancy and before parturition in China from 2010 to 2018: a population-based large-sample cohort study

    Get PDF
    BackgroundThe progression of global warming and increase in instances of extreme weather have received considerable attention. We conducted a cohort study on women of childbearing age in Yunnan Province, examined the association between ambient temperature and humidity on preterm birth and evaluated the effects of extreme weather during early pregnancy and before parturition on preterm birth.MethodsWe conducted a population-based cohort study on women of childbearing age 18–49 years who participated in National Free Preconception Health Examination Project (NFPHEP) in Yunnan Province from January 1, 2010, to December 31, 2018. Meteorological data, namely daily average temperature (°C) and daily average relative humidity (%), were obtained from China National Meteorological Information Center. Four exposure windows were explored: 1 week of pregnancy, 4 weeks of pregnancy, 4 weeks before delivery, and 1 week before delivery. We used a Cox proportional hazards model and adjusted the potential risk factors for preterm birth to obtain the effects of exposure to temperature and humidity on preterm birth among the stages of pregnancy.ResultsAt 1 week of pregnancy and at 4 weeks of pregnancy, the association between temperature and preterm birth was U-shaped. The correlation between relative humidity and the risk of preterm birth was n-type at 1 week of pregnancy. The correlation between preterm birth and temperature and relative humidity at 4 weeks before delivery and at 1 week before delivery is J-shaped. Low temperature and low humidity were protective factors against preterm birth, whereas high temperature and high humidity were risk factors for preterm birth.The effects of high temperature and extremely high temperature were the strongest at 4 weeks before delivery, with HRs of 1.417 (95% CI: 1.362–1.474) and 1.627 (95% CI: 1.537–1.722), respectively. The effects of extremely low humidity and low humidity were strongest at 1 week before delivery, with HRs of 0.681 (95% CI: 0.609–0.761) and 0.696 (95% CI: 0.627–0.771), respectively.ConclusionTemperature and relative humidity affect preterm birth differently for each pregnancy stage. The effects of meteorological factors on pregnancy outcomes such as premature birth should not be ignored

    Effects of Taxifolin on Osteoclastogenesis in vitro and in vivo

    Get PDF
    Osteoporosis is a highly prevalent disease which has been a major public health problem and considered to be associated with chronic low-grade systemic inflammation and oxidative damage. Taxifolin is a natural flavonoid and possesses many pharmacological activities including antioxidant and anti-inflammatory. Because flavonoids have been confirmed to fight osteoporosis and promote bone health, the aim of this study was to investigate the effects of taxifolin on the formation and function of osteoclast. In this study, we examined the effects of taxifolin on osteoclast using both in vitro and in vivo studies. Taxifolin suppressed the activation of nuclear factor-κB, C-Fos and mitogen-activated protein kinase, and also decreased osteoclast-specific genes expression, including Trap, Mmp-9, Cathepsin K, C-Fos, Nfatc1, and Rank. Taxifolin also prevented reactive oxygen species (ROS) production following RANKL stimulation. In addition, taxifolin alleviated ovariectomized-induced bone loss by repressing osteoclast activity and decreasing serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and receptor activator of nuclear factor-κB ligand (RANKL) in vivo. Our results indicated that taxifolin inhibits osteoclastogenesis via regulation of modulation of several RANKL signaling pathways. Therefore, taxifolin may be considered as a potential alternative therapeutic agent for treating osteoclast-related diseases

    Dihydromyricetin Protects against Bone Loss in Ovariectomized Mice by Suppressing Osteoclast Activity

    No full text
    Dihydromyricetin (DMY), the main flavonoid component of Ampelopsis grossedentata, possesses pharmacological activities useful for treatment of diseases associated with inflammation and oxidative damage. Because osteoclasts are often involved in chronic low-grade systemic inflammation and oxidative damage, we hypothesized that DMY may be an effective treatment for osteoclast-related diseases. The effects of DMY on osteoclast formation and activity were examined in vitro. Female C57BL/6 mice were ovariectomized to mimic menopause-induced bone loss and treated with DMY, and femur samples were subjected to bone structure and histological analysis, serum biochemical indicators were also measured. DMY suppressed the activation of nuclear factor-κB, c-Fos and mitogen-activated protein kinase, and prevented production of reactive oxygen species. DMY decreased expression of osteoclast-specific genes, including Trap, Mmp-9, Cathepsin K, C-Fos, Nfatc1, and Rank. In addition, DMY prevented bone loss and decreased serum levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, and with a decrease in the ratio between receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and osteoprotegerin (OPG) in vivo. These findings demonstrate that DMY attenuates bone loss and inhibits osteoclast formation and activity through modulation of multiple pathways both upstream and downstream of RANKL signaling. DMY may thus be a useful option for treatment of osteoclast-related diseases such as rheumatoid arthritis and osteoporosis

    Tantalum Nanoparticles Reinforced Polyetheretherketone Shows Enhanced Bone Formation

    No full text
    Polyetheretherketone (PEEK) has been used in orthopedic surgery for several decades. Numerous methods were invented to alter the properties of PEEK. By adding nanoparticles, fibers, etc., elastic modulus and strength of PEEK can be changed to meet certain demand. In this study, tantalum (Ta), a promising metal, was introduced to modify the properties of PEEK, in which PEEK was reinforced with different contents of tantalum nanoparticles (from 1 wt% to 9 wt%). Mechanical properties and biological functions (both in vitro and in vivo) were then investigated. The highest elastic modulus and compressive strength were observed in 3%Ta-PEEK. Cell experiments as cell adhesion, collagen secretion, biomineralization and osteogenesis related gene expression showed preferable results in 3%Ta-PEEK and 5%Ta-PEEK. Improved bone integration was shown in 3%Ta-PEEK and 5%Ta-PEEK in vivo. Above all, enhanced mechanical properties and promoted bone formation were proved for 3%Ta-PEEK and 5%Ta-PEEK compared to others groups both in vitro and in vivo, suggesting that the addition of tantalum nanoparticles modified the osseointegration ability of PEEK. This composite of tantalum and PEEK could have a clinical potential for orthopedic implants
    corecore